
PrairieLearn Production Server Setup

Senior Design May 2024 - 33

Mitch Hudson
Tyler Weberski
Chris Costa

Andrew Winters
Carter Murawski
Matt Graham

Table of Contents

Setup Introduction 3
Acquire Virtual Machine 3
Firewall Setup 3
Set up SSH 4
SSH Multi-Factor Authentication (Google Authenticator) 6
Reverse Proxy (NGINX) 7

Install NGINX 7
Generate SSL Certificates 7
Configure NGINX 9

PrairieLearn Production Server 10
Install Prerequisites 10
Clone PrairieLearn 11
Set up OAuth2 11
Create Admin Account 18
Set up Start on Boot 19
Add Course to PrairieLearn 20

Conclusion 23
Appendix 24

2

Setup Introduction

This document intends to outline the steps required to set up and start running a
PrairieLearn server in a production environment. For our purposes, we use Ubuntu
22.04, UFW, NGINX, and Docker Compose to run our environment.

Acquire Virtual Machine

The first step to setting up the production environment is to get a virtual machine from
the admins at the ECE department of ISU. We used the form at
https://admin.ece.iastate.edu/requests/vm/new to get a VM running on the university
servers. Our specifications are Ubuntu 22.04, 4 CPU cores, 8 GB memory, 100 GB
storage, and hostname cpre288-pl-f2023.ece.iastate.edu.

Firewall Setup

Once we have our server, the first thing we set up is our firewall. We do this first to
ensure our server is protected while setting up our environment. We use ufw which
comes pre-installed in Ubuntu 22.04, so we only have to set up the rules and enable it.

$ sudo ufw allow 22/tcp -c "SSH"

$ sudo ufw allow 80/tcp -c "HTTP"

$ sudo ufw allow 443/tcp -c "HTTPS"

$ sudo ufw default deny incoming

$ sudo ufw enable

The first three commands set up rules for allowing SSH, HTTP, and HTTPS incoming
traffic. We use SSH to connect to the server, and HTTP and HTTPS are connected to
our NGINX proxy. Notice we do NOT allow incoming traffic to port 3000 which is where
our PrairieLearn server will be hosted. This is because doing so would allow users to
connect directly to the PrairieLearn server and bypass our reverse proxy, as well as our
HTTPS encryption. We only allow HTTP traffic on port 80 so we can redirect it to
HTTPS using NGINX.

3

https://admin.ece.iastate.edu/requests/vm/new

The fourth command is only used to ensure the firewall is set up to deny any incoming
traffic not specifically mentioned by our rules.

Finally, the fifth command enables the firewall, protecting our server.

Set up SSH

To protect our server, we had each team member create a user on the virtual machine
with their own password with sudo privileges. Then, we had each user create
public-private key pairs using ssh-keygen to allow easy connection between the team
and the server. Once each team member had working keys, we set up SSH to only
allow public key authentication, disabling password authentication.

First, we create a new user for the team member’s netid. We also make the new user a
part of the sudo group, so they can use sudo. Then, we log in as the user to create ssh
keys.

> ssh vm-user@cpre288-pl-f2023.ece.iastate.edu

Password: (for vm-user)

$ sudo adduser <netid>

Password: (for new account)

$ sudo usermod -aG sudo <netid>

$ sudo login <netid>

Password: (for new account)

For best practice, we use ed25519, which has similar security to RSA but with less
computation and less space. After creating the keys, we add the public key to the
authorized_keys file, and copy the private key to the team member’s PC.

On Server:

$ ssh-keygen -t ed25519 -f ~/.ssh/<netid>_ed25519

Password: (for ssh key encryption)

$ cat ~/.ssh/<netid>_ed25519.pub >> ~/.ssh/authorized_keys

$ cat ~/.ssh/<netid>_ed25519

---- BEGIN PRIVATE KEY ---- ...

---- END PRIVATE KEY ----

4

We copy the private key to the client PC at
C:/Users/<username>/.ssh/<netid>_ed25519.

Once the user has the key installed on their system, we create a host for the server to
simplify the connection process:

C:/Users/<username>/.ssh/config

...

Host sdmay24-33

HostName cpre288-pl-f2023.ece.iastate.edu

User <netid>

IdentityFile C:/Users/<username/.ssh/<netid>_ed25519

IdentitiesOnly yes

...

Once this host is added, team members can log into the server by simply running

> ssh sdmay24-33

Finally, once every team member has created their account and can successfully
connect to the server using public key authentication, we can disable password
authentication and the original vm-user account.

Disabling password authentication and enabling MFA

$ sudo vim /etc/ssh/sshd_config

...

PubkeyAuthentication yes

PasswordAuthentication no

...

$ sudo systemctl restart sshd

Disabling vm-user by replacing /bin/bash with /usr/sbin/nologin

$ sudo vim /etc/passwd

...

vm-user:x:1000:1000:vm-user:/home/vm-user:/usr/sbin/nologin

...

5

SSH Multi-Factor Authentication (Google Authenticator)

If password authentication is still desirable despite the security implications, we added
in MFA when using password logins. To do this we installed libpam-google-authenticator
and applied it to our sshd configuration.

Installing libpam-google-authenticator

$ sudo apt install libpam-google-authenticator

Adding MFA to SSH.

$ sudo vim /etc/pam.d/sshd

...

auth required pam_google_authenticator.so

If desired, you can add nullok to the end of the auth required line to allow password
logins without MFA when the user hasn’t set it up yet.

Adding MFA to sshd_config

$ sudo vim /etc/ssh/sshd_config

...

KbdInteractiveAuthentication yes # Change this to yes

...

Finally, applying the changes by restarting sshd.

$ sudo systemctl restart sshd

After performing this setup, each user needs to log in and run the following commands
to set up MFA.

$ google-authenticator

Running this command gives you a QR code to scan with the Google Authenticator app,
as well as a secret key, if you don’t want to scan the QR code. Scanning / entering this
code adds the MFA to the app so you can get tokens when logging in.

6

It also gives you several “scratch codes” that are used to reset MFA if needed, so note
these down somewhere. Finally, it will ask you a series of questions, which you need to
respond to. I recommend responding in the following way:

● Make tokens “time based”: yes
● Update the .google_authenticator file: yes
● Disallow multiple uses: yes
● Increase the original generation time limit: no
● Enable rate limiting: yes

Lastly, it will ask you for the token from the Google Authenticator app before applying
MFA to your account, which ensures you have the app set up correctly.

Reverse Proxy (NGINX)

NGINX can act as a reverse proxy, allowing us to pass our PrairieLearn instance
through it to encrypt it via HTTPS.

To set this up, we needed to do a few different things.
1. Install NGINX
2. Generate and acquire signed SSL certificates
3. Configure NGINX

Install NGINX

Installing NGINX is a fairly easy process, only a few commands are required.

$ sudo apt update && sudo apt upgrade -y

$ sudo apt install nginx

After running these commands, a basic NGINX server is installed and started, allowing
us to access the default NGINX server through its hostname in a browser and HTTP.

Generate SSL Certificates

The next step to setting up our proxy is to generate certificates to be used by HTTPS.

7

This requires several steps and help from the professor, specifically for servers run by
the university.

The first step is to use openssl to generate a certificate signing request. We use
ECDSA, as it allows for similar security to high bit-count RSA, while using far fewer bits
and requiring less arithmetic. First, we generate a new private key, then using that key
we create a CSR that can be given to a certificate authority and signed.

$ openssl ecparam -aes256 -name prime256v1 -genkey -noout -out

mykey.key

The -aes256 part of the command encrypts the key, so we need to give it a password.
Then, using the output file from this command we run the following to generate a CSR.

$ openssl req -new -sha256 -key mykey.key -out mycsr.csr

This CSR is then sent to https://asw.iastate.edu/cgi-bin/acropolis/request/certificate/ssl
where the admins at ISU will sign it using their certificate authority and give us back a
mycrt.crt file with the resulting certificate.

Lastly, we put our two files into the /etc/ssl folder, give them the proper access control,
and rename them to our domain.

$ sudo cp mykey.key /etc/ssl/cpre288-pl-f2023.key

$ sudo cp mycrt.crt /etc/ssl/cpre288-pl-f2023.crt

$ sudo chmod 600 /etc/ssl/cpre288-pl-f2023.key

$ sudo chmod 644 /etc/ssl/cpre288-pl-f2023.crt

The key file is set to 600 because that means only root can read, write, or execute the
file, and no one else is allowed. The certificate file is set to 644 because it needs to be
readable by the other users on the system, as it is the public key.

Using the two files (.key and .crt), we can successfully set up HTTPS with NGINX.

8

https://asw.iastate.edu/cgi-bin/acropolis/request/certificate/ssl

Configure NGINX

Finally, we can configure NGINX to connect with our production PrairieLearn server and
use HTTPS to connect to the end users.

$ sudo vim /etc/nginx/sites-available/default

server {

listen 80 default_server;

listen [::]:80 default_server;

server_name _;

return 301 https://$host$request_uri;

}

server {

listen 443 ssl;

listen [::]:443 ssl;

server_name cpre288-pl-f2023.ece.iastate.edu;

ssl_certificate /etc/ssl/cpre288-pl-f2023.crt;

ssl_certificate_key /etc/ssl/cpre288-pl-f2023.key;

access_log /var/log/nginx/nginx.access.log;

error_log /var/log/nginx/nginx.error.log;

location / {

proxy_pass http://localhost:3000;

proxy_set_header Host $host;

proxy_set_header X-Forwarded-Proto $scheme;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_redirect off;

}

}

We use two servers, one listening on port 80 as the default and another listening on port
443 for HTTPS. We only use the default server (port 80) for redirecting to https.

9

In the HTTPS server, we set the server_name to our domain, the certificate and
certificate key to the certificate files from the last step, and the access and error logs to
generic log files in /var/log.

Since we are only using NGINX for a reverse proxy, we have no root folder for either
server, and the default location ‘/’ is only used to pass the proxy to the PrairieLearn
server running on port 3000.

Finally, we restart NGINX with the below command

$ sudo nginx -s reload

PrairieLearn Production Server

To set up the PrairieLearn server in production mode there are several steps.
1. Install Prerequisites
2. Clone PrairieLearn
3. Set up OAuth2
4. Create Admin Account
5. Set up Autorun Service
6. Add Course to PrairieLearn

Install Prerequisites

The first step to setting up PrairieLearn is to install the prerequisites required by
PrairieLearn. This includes docker and docker-compose.

$ sudo apt update && sudo apt upgrade -y

$ sudo apt install docker docker.io docker-compose-v2

10

Clone PrairieLearn

Next, we clone PrairieLearn onto the server. To improve security, though, we create a
separate user with limited privileges and access.

useradd pl

Password: (pl account password)

login pl

Password: (pl account password)

$ git clone https://www.github.com/PrairieLearn/PrairieLearn.git

$ cd PrairieLearn

$ touch docker.sh

$ chmod +x docker.sh

$ vim docker.sh

#!/bin/bash

sudo docker compose -f docker-compose-production.yml up

The docker.sh file is used by our pl account to start the docker container and run
PrairieLearn. Since docker.sh uses sudo, the pl account needs to be able to run the file
as root with sudo, so we need to edit the sudoers file. To do this, we add the following.

visudo

...

pl ALL=(root) /home/pl/PrairieLearn/docker.sh

...

All of this means that pl will be able to run ~/PrairieLearn/docker.sh as root using sudo.

Set up OAuth2

The next step is to set up OAuth2 to let users log in to the PrairieLearn server. In order
to do this we need to create a Google account to be used as the group’s main account.
We created cpre288.pl.f2023@gmail.com for this purpose, using a randomly generated
password.

With the account created, we can get API credentials through
https://console.cloud.google.com. First, we create a new project, calling it cpre288.

11

mailto:cpre288.pl.f2023@gmail.com
https://console.cloud.google.com

Google API New Project screen

Then, we set up the OAuth consent screen, which is what is shown to users when they
access our app.

12

OAuth consent screen creation

We use external because no one accessing PrairieLearn is in the
cpre288.pl.f2023@gmail.com organization. This can be changed later, but would require
significant effort and the creation of a Google organization that every student would
need to be a part of.

13

App creation screen

14

Next, we created a new app for the OAuth consent screen. We called our app
prairielearn-cpre288 to reflect the course and the fact that we are using PrairieLearn.
We also added a link to the homepage, authorized iastate.edu as a domain, and added
the sdmay24-33@iastate.edu email group to the developer contact information.

Our app didn’t need any access to users’ Google accounts, so we ignored the scopes
page and moved on.

We also didn’t need any test users, so we ignored that page too.

Once we created the OAuth consent screen, we moved on to creating an OAuth2 client
ID so we could connect PrairieLearn to the service. We did this by clicking CREATE
CREDENTIALS and OAuth client ID in the drop down.

Instructions to creating OAuth2 credentials

15

mailto:sdmay24-33@iastate.edu

OAuth client ID creation screen

16

In the following menu we filled in the application type as a Web app, named it
production-server, and filled in our URI for the JS origins and redirect URI. Note: The url
for the redirect is https://cpre288-pl-f2023.ece.iastate.edu/pl/oauth2callback as
described by the PrairieLearn docs

Successful OAuth client creation

Finally, we are given the client ID and secret for our OAuth2 app, which we can give to
PrairieLearn. Note: the above client ID and secret are not the actual ID and secret.

To put these credentials into PrairieLearn, we create a new file in the PrairieLearn clone
root folder called config.json

17

https://cpre288-pl-f2023.ece.iastate.edu/pl/oauth2callback

$ vim ~/PrairieLearn/config.json

{

"serverCanonicalHost": "https://cpre288-pl-f2023.ece.iastate.edu",

"googleClientId": "<Client ID>",

"googleClientSecret": "<Client Secret>",

"googleRedirectUrl":

"https://cpre288-pl-f2023.ece.iastate.edu/pl/oauth2callback",

"hasOauth": true

}

The first config “serverCanonicalHost” tells PrairieLearn what URL it is hosted at, and
the last four are for setting up the OAuth.

Finally, we need to tell PrairieLearn to use our config file, and since we use docker
compose, we need to edit the docker-compose-production.yml file to include it.

$ vim ~/PrairieLearn/docker-compose-production.yml

...

services:

pl:

...

volumes:

...

- ./config.json:/PrairieLearn/config.json

...

...

We can now run the production server by running docker.sh as the pl user.

$ sudo ~/PrairieLearn/docker.sh

Create Admin Account

The next step is to create an admin account in PrairieLearn that can create and modify
courses. We do this by first logging into the production server using our new Google

18

account from the OAuth setup. Once we log in our user is added to PrairieLearn’s
database, and we can use a second SSH instance to access the docker container to
change its permissions.

$ sudo docker ps

CONTAINER ID ... NAMES

d47b4b7ff78f ... <name>

$ sudo docker exec -it <name> /bin/bash

psql postgres

SELECT * FROM users;

user_id | ...

--------+----

<id> | ...

INSERT INTO administrators (user_id) VALUES (<id>);

The first command finds the docker container name, and the second connects to it with
an interactive bash shell. Next, we log into the postgres database and find the user we
created. Finally, we add the user into the administrators table, thus making our account
an administrator that can edit, create, and delete courses.

Set up Start on Boot

To make the server startup on boot (in case the server needs to be rebooted, for
example) we only need to change a few things.

First, we need to set docker to run on boot.

$ sudo systemctl start docker

$ sudo systemctl enable docker

Then, we need to edit the docker-compose-production.yml file to auto restart the service
by adding the line restart: always after pl.

$ vim ~/PrairieLearn/docker-compose-production.yml

services:

pl:

restart: always

...

19

Now, whenever the docker container stops (except manually), docker is restarted, or the
virtual machine is restarted, the PrairieLearn docker will be automatically restarted.

Add Course to PrairieLearn

The last step in creating our environment is adding the course from our git repository to
the PrairieLearn production server.

First, in GitLab, we need to create an access token that has the Reporter role with
repository_read access.

Add token screen

20

Once we get the token, we can use the url
https://prod:<token>@git.ece.iastate.edu/sd/sdmay24-33.git to pull updates from the
production server. We can also add write_repository later to allow admins to edit the
courses.

The last step to adding the course is to go to the Admin console from the website and
add a course with the above link and a path.

Add course button

21

https://git.ece.iastate.edu/sd/sdmay24-33.git

Add course prompt

Once it is created, all we need to do is sync it to download all the updates from the git
repo.

22

Sync button

Conclusion

Through this process we created and set up a virtual machine to host PrairieLearn in a
Docker container behind an NGINX reverse proxy encrypting traffic through HTTPS.
Appendix A shows the full internal diagram of the virtual machine. UFW monitors traffic
and ensures that the server only responds to SSH, HTTP, and HTTPS traffic. NGINX
redirects HTTP traffic to HTTPS and encrypts responses from PrairieLearn using
HTTPS. PrairieLearn and Docker handle the course environment visible to students and
several Docker containers are created as autograders to be used by PrairieLearn for
compiling and testing student-submitted code.

23

Appendix

Appendix A: Internal server diagram

24

